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A COMPARISON OF VECTOR-SENSING AND
SCALAR-SENSING LINEAR ARRAYS

INTRODUCTION

Unlike scalar pressure sensors, acoustic vector sensors measure the amplitude and phase
of acoustic particle motion in a given direction. These sensors, generally referred to as velocity
sensors, measure a vector quantity, i.e., acoustic particle acceleration, velocity, or displacement.
A single-axis, or uniaxis, acoustic vector sensor will be defined here as a sensor that measures
one (cartesian) component of the acoustic field vector. Biaxial vector sensors, such as biaxial
accelerometers, denote sensors that measure motion in two orthogonal directions, while triaxial
vector sensors measure all three orthogonal components. These uniaxis and multiaxis vector
sensors can then be configured into an array of elements, the elements of which may be delayed,
weighted, and summed, as commonly done with standard pressure hydrophones. However, there
are some unique features present in the beamforming of vector sensors that are not present with
pressure sensors. This report will describe some of these unique features, i.e., the differences
between arrays of scalar pressure sensors and arrays composed of acoustic vector sensors.

REVIEW OF PREVIOUS RESEARCH

A brief literary review indicates that a group of researchers!-4 have recently documented
some aspects of beamforming arrays of multiple-axis vector sensors. D'Spain! constructed and
deployed a 16-element vertical line array that measured the three components of free-field
acoustic particle velocity as well as acoustic pressure. The low frequency Dlrectional low
Frequency Analysis and Recording (DIFAR) array consisted of collocated pressure hydrophones
with three orthogonally mounted geophones. The output from a geophone sensor is directly
proportional to acoustic particle velocity. At-sea data collected from the array were beamformed
conventionally (delayed and summed with uniform amplitude weighting) and adaptively, using a
minimum variance Capon approach on all four quantities.

Nehorai? developed an analytical model to compare the direction-of-arrival (DOA)
estimation performance of an array of sensors, which measures acoustic pressure and all three
components of acoustic particle velocity, to that of an array which measures acoustic pressure
only. The paper treated both single and multiple acoustic sources in an ideal free-field
environment. Cramer-Rao lower bounds (CRLB) on DOA estimation for the single-source
single-vector sensor as well as multiple-source multivector sensors were given. The CRLB
provides a universal measure of achievable estimation accuracy and is commonly used by signal
processors to compare the merits of different high-resolution DOA methods. Hawkes3 extended
the work of Nehorai by introducing a plane boundary at or near the vector-sensing array. As
done previously in the paper by Nehorai, expressions for the CRLB were derived and analyzed




for various stand-off distances from ideal pressure-release and rigid boundaries. In reference 4,
Kneipfer, using notation and formulations common to the sonar community, rederived some of
the analytical model developed by Nehorai. The work reported here is a continuation of
Kneipfer's preliminary efforts, examining in additional detail the merits of vector-sensing arrays.

MODEL OF ARRAY RESPONSE

This section will develop a model for the beamformed response of uniaxial, biaxial,
and triaxial arrays of vector sensors which measure acoustic particle velocity in the free field and
on an idealized boundary. The boundary is assumed to provide perfect baffling of half the free-
field acoustic field and ideal pressure-release behavior for each orthogonal acoustic velocity
component. The baffled and free-field vector array responses are compared to that of a similar
array of scalar pressure sensors. The effects of a nonideal boundary, such as a submarine hull
coating, may be incorporated in future investigations. It is important to stress that these
comparisons have been made in order to assess the merits of an array of vector sensors to an
array of scalar sensors based on ideal conditions. If the benefits of vector-sensing are significant,
then subsequent investigations can incorporate realistic boundary behavior. Keltie> has
investigated a realistic solid-layer model for typical submarine hull coatings, which models both
the coating's tangential and normal signal-induced velocities. If warranted, his results may be
incorporated into the model developed here.

Each multiaxis-vector sensor will be assumed to be collocated, measuring three
orthogonal components of particle velocity at the same spatial location. Such a restriction may
not be optimal for detection but is used here to simplify the formulation. Figure 1 illustrates the
array geometry and coordinate system.

Acoustic particle velocities are defined as small amplitude motions of constant volume
fluid particles (each particle having unvarying fluid properties) about some equilibrium position.
Acoustic pressure is defined as the instantaneous pressure at a point, minus the hydrostatic
pressure at that point. In cartesian coordinates, time-harmonic acoustic planewaves, which have
wavefronts propagating in the direction of acoustic wavevector — k£ (by convention the acoustic
wavenumber has been defined to point from the origin towards the source), can be characterized
by acoustic pressure or by acoustic particle velocity. Thus,

= _ p ik Fror+dp)
p(?‘,(x)) - Pe s (1)

v (F,0)= Vxei(k‘F.*'de)x )= )

5 )=V i(k-F+ot+by)
Vy(r,(x)) ye 5 (3)

and

= _ i(k-F+ot+o,)
v,(F,0)=V,e""" ; 4

where |[k||(= @ / ¢) is the acoustic wavenumber, with @ the circular frequency, c is the sound
speed, 7 =[x,y,z] is the position vector, P is the amplitude of the sound wave pressure, and



Vx> Vy, V7 are the amplitudes of the component velocities in the x, y, and z directions,
respectively. The complete vector field may be written as

T (F,0)=v,(F,0), +v,(F,0)7, +v,(F,0)7,, (5)

and it is noted that the velocity vector ¥ comprises all three vector components and is
P p

complex; i.e., it has complex-valued components [v4,V;, ,v;]. The vectors {7, n,, n,} are
mutually perpendicular unit vectors aligned as shown in figure 1. The elements of an uniaxis
vector-sensing array measure only one of the velocity vector components, such as vy »Vy, OF Vg,
while the multiaxis arrays measure two or more of these orthogonal vectors. For example,

vW(F,0)=v,F,0)m,, ©6)

and

O F,0)=v,(F,0), +v,(F,0),. (7

The superscript denotes the dimension of the velocity vector, biaxial vector sensors having a
dimension of 2, triaxial a dimension of 3. Other combinations are, of course, possible and will
be discussed shortly.
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Figure 1. Array Coordinates and Geometry for an Equispaced
Line Array of Multiaxis Vector Sensors




It should be noted that, with collocated multiaxis vector sensors, the component phases,
(#x:9,.4,), in equations (2), (3), and (4), may be referenced or calibrated in any manner relative
to each other. That is, a single multiaxis-vector sensor could be used to determine whether
propagating waves had clockwise or counterclockwise particle rotations by examining the
differences in the component phases. A 90°-phase shift of a tangential component relative to the
normal vector component would be indicative of a surface wave having clockwise particle
rotations. This is an aside, but the relationship of the component phases may prove to be a useful
property in subsequent investigations, such as in the use of vector sensors to cancel noise rather
than detect signals. However, here the components of the vector sensors will be assumed to be
in-phase, with the component phases set to zero. The harmonic time-dependence exp(iw?) of the
acoustic pressure and particle velocities will be suppressed henceforth.

The spatial gradient of acoustic pressure and the particle velocities are related via Euler's
linearized momentum equation. Namely, for harmonic waves,

v
Vp(F)=- poT = impo(vx (?)ﬁx + Vy(’—;)ﬁy +v,(F)A,), 4 (8)

where the density of the fluid medium is denoted as p,,.

Now, if one considers a first-order Taylor series expansion of acoustic pressure about
some point defined by the position vector 7,, then,

p(7F) = p(7,)+Vp(7,)-(F-F7,)

=p(7,) +i0p,(v.(7)n, + v, (7 )R, +v.(F,)A,)-(F - F,), ®)

where equation (8) has been substituted for the gradient in equation (9) and 7—7, = (x —x, )7,

+ (y=y,)A, +(z—z,)A,. D'Spain remarked on this expansion, noting that the simultaneous
measurement of acoustic pressure and particle velocity at a single point is equivalent to
measuring the acoustic pressure in a volume of space about the measurement point. Therefore, a
single multiaxis-vector sensor may be considered similar to a small (in terms of an acoustic
wavelength) volumetric array of scalar pressure sensors, and a line array of multiaxis-vector
sensors is equivalent to a line array of discrete volumetric pressure-sensing elements. However,
the accuracy of the above expansion, since it is truncated to first order, decreases with increasing
volumetric radius, R = [[F—7,||. This implies that the ability of equation (9) to correctly measure
the acoustic pressure in a given volume of space is dependent on the acoustic wavelength.
Comparing the ratio of the second-order Taylor series term (not shown) to the first-order term
given in equation (9) indicates that the truncated expansion is valid for a volumetric radius less
than approximately one-third of an acoustic wavelength.

Pressure-gradient hydrophones can measure the quantity Vp as well by measuring the
phase difference of a planewave between two spatially separated hydrophones. The separation
distance must increase, in order to obtain an accurate estimate of the gradient, with increasing
wavelength. At low frequencies, the separation distances required for pressure-gradient
hydrophones are often too large to be feasible for array applications.



AMPLITUDE RESPONSE OF VECTOR SENSORS

The assumed geometry of an equispaced linear array of vector sensors is shown in figure
1. For the baffle configuration, the sensors lie in the xz-plane and are bounded by a semi-infinite
acoustic medium for y > 0. The baffle here is assumed ideal; i.e., perfectly rigid in the case of an
array of pressure sensors and entirely pressure release, for each component, in the case of an
array of vector sensors. In equation (1), P is defined as the amplitude or angular sensitivity of
the pressure sensor for angular coordinates, (6,¢), where 0 is defined as the azimuthal angle and
¢ the elevation angle. For half-omnidirectional element sensitivity on a rigid baffle

2 for -90°<8, $<90°
P(8,9) = {O otherwise } (10)

It is assumed that each orthogonal component of a vector sensor has an amplitude
response or element sensitivity which is proportional to the cosine of the angle between the
planewave incidence arrival direction and each component normal (the component's maximum
response axis). This assumption is based upon elementary solutions to the wave equation at the
boundary of an ideal pressure release surface. The component normals are, for the simple line
array configuration under investigation, equivalent to the unit normals, {7,,7,,7,}, as defined
in figure 1.

The wavevector describing the orientation of the arrival of the incident planewave, shown
in figure 2, is denoted k with components [y, ky, k;]. Figure 2 also depicts the conical angle Q,,
as in equation (16), left-hand side, formed between y-unit normal, 7 y > and the arrival direction.

Figure 2. Angular Coordinates Used to Define Incident Direction of
Acoustic Planewave at Wavevector k




From figure 1 then,

k, = lkllsin(8) cos(¢), 11

k, = Ikl cos(8) cos(d), (12)
and

k, = |Ikllsin(o). (13)

The angle formed between the vectors k and {7, ,7 > 7} can be determined via their dot
product. Hence, cosine angular dependence yields

2cos(® ;) Jor —90°<0,$<90°and j=x,y,z
V;(®.4)= {O ’ otherwise }’ a4
where |
cos(®, ) = cos(¢)sin(0), (15
cos(®,,) = cos(¢) cos(0), (16)
and
cos(®, ) = sin(9). 17

The factor of 2 in equation (14) is due to the assumption of an ideal surface, thereby
doubling the signal amplitude for all angles of incidence. Thus, a baffled triaxial vector sensor
can be expressed as

1‘7‘(3)(9, $,7,) = 2{cos(®, )eikxx" A, +cos(®,, )eikyy" 7, +cos(®, )eikzzo n,}, (18)

with the velocity vector dependence on azimuthal and elevation angles now explicitly indicated.

Another illustration of the conical angles associated with each vector component is given
in figure 3. Here the amplitude response of the vector components, vy, vy, and v,, on an ideal
boundary, are characterized. In the free field, of course, the vector sensor responses are simply
reduced by one-half and extended over all acoustic space (-180° <8 < 180°, —90° < ¢ < 90°).

The amplitude response of a half-omnidirectional pressure sensor, given by equation (10),
is shown as a gray scale image in figure 4. In all of these images, the darker regions correspond
to minima and bright to maxima, and for figures 4 through 12, the gray scale varies from zero to
a maximum value of 2, shown as white. The abscissa is azimuthal angle 6 from -90° to +90°; the
elevation angle is shown on the ordinate over the same angular region. For illustration, in figure
4 only, the half-omnidirectional critical angle was set to +89°. As indicated, the amplitude
response of a half-omnidirectional pressure sensor is essentially uniform over the entire acoustic
domain of interest.

Figure 5 shows the amplitude response of a uniaxial velocity sensor aligned along the
y-axis, or the amplitude Vy, of the velocity component vy,.



Figure 3. Triaxial Vector Sensor Element Response on an Ideal Boundary
Showing Conical Angles Oy, 6, O,
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Figure 4. Amplitude Response of a Half- Figure 5. Amplitude Response of the
Ommnidirectional Pressure Sensor on v,-Component of a Uniaxial-Vector Sensor on
a Rigid Boundary an Ideal Pressure Release Boundary
7




A cross-section of this element response, showing the cosine angular dependence, is
given in figure 6. The amplitude of V), is reduced by one-half at +60°. Responses for Vy and V;
are shown in figures 7 and 8. For illustration, both of the amplitude lobes of Vy and V are
shown positive; the polarity is suppressed. Figures 9, 10, and 11 show the element response
combinations possible from a biaxial vector sensor. In figure 9, the vector magnitude of the
amplitudes of ¥y and ¥y, are shown. Notice, in figure 10, that a biaxial sensor which measures
only velocities in the xz-plane produces a null at broadside steerings (6 = 0°).

The element response for a triaxial vector sensor is given in figure 12, and as with the
half-omnidirectional-pressure sensor, the element response is uniform for all elevation and
azimuth arrival angles. Hence, the magnitude of a triaxial vector sensor yields an element
response equivalent to a scalar pressure sensor. Some may then question what benefit, in terms
of element sensitivity, triaxial vector sensors have over pressure-sensors. One notable benefit is
described in the following section, namely, the ability to steer a single vector sensor in the
planewave arrival direction.
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AMPLITUDE RESPONSE OF V, ON IDEAL BAFFLE
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Figure 6. Cross Section of the Amplitude Response of the vy,~-Component
of a Uniaxial Vector Sensor versus Azimuth Angle (¢ = 0°)
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Figure 7. Amplitude Response of the Figure 8. Amplitude Response of the
vx-Component of a Uniaxial Vector Sensor vz-Component of a Uniaxial Vector Sensor
on an Ideal Pressure Release Boundary on an Ideal Pressure Release Boundary
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Figure 9. Magnitude of the vy~ and W Figure 10. Magnitude of the vy~ and v,-
Components of a Biaxial Vector Sensor on Components of a Biaxial Vector Sensor on
an Ideal Pressure Release Boundary an Ideal Pressure Release Boundary
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Figure 11. Magnitude of the vy- and v, Figure 12. Magnitude of the vx-, vy~, and
Components of a Biaxial Vecior Sensor v-Components of a Triaxial Vector Sensor
on an Ideal Pressure Release Boundary on an Ideal Pressure Release Boundary

BEAMFORMING A SINGLE VECTOR SENSOR

It is possible to form a broad acoustic beam, which is steered in the direction of the
incident wavevector, k , using a single triaxial vector sensor. A biaxial sensor may be steered as
well, but only in one angle, such as azimuth.

Consider the vector-sensor response given in equation (18), with the sensor located at the
origin,

73(8,9,0) = 2{cos(®, )71, +c0s(® ,)7i,, + cos(® )7, }. (19)

Then, as outlined in reference 4, the dot product of the normalized velocity field vector at the
angle at which the element is steered (65, ¢5), and the velocity vector at arrival angle (0, ¢), may
be taken, yielding

73(0,,05.0)-7%(0,00) 3
et P 600(6,,0,,0,0)
79(0,,6,.0) [/4)(6,0.0)

= cos(d ) cos(¢)cos(8—8,) +sin(¢ ) sin(9). (20)

The product g6y, ds, 0, ¢) reaches a maximum of unity when (8, ¢5) = (6,9). For a biaxial
sensor, measuring the components vy and Vs the steered element response is

10

90



g9(8,,0) = cos(6 - 6,). | " 1)

Figures 13 and 14 present the amplitude response and the associated beam pattern (log of
the squared amplitude response) of a single triaxial vector sensor steered to 45° azimuth and 30°
elevation. The amplitude is not symmetrical about the steered direction, i.e., the beamwidth is
broader in azimuth than elevation. This is caused by the cosine directionality of each component
amplitude, the summed response being a combination of cosines.

Shown in figure 15 are beam patterns for a triaxial element steered to 0° azimuth and
various elevation angles. In elevation, the power in each element beam is reduced by one-half at
+60°, as predicted for cosine directivity and shown previously. The half-power beamwidth does,
however, vary with other element steerings. For example, figure 14 illustrates the beam pattern
for the amplitude response given in figure 13. Here, the half-power beamwidth occurs when the
arrival angles are such that g(3/(45°, 30°, 8, ¢) equals one-half. All of the element beamwidths are
frequency-independent. )
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Figure 13. Amplitude Pattern of a Single Figure 14. Beam Pattern of a Single
Triaxial Vector Sensor Steered to Triaxial Vector Sensor Steered to
45° Azimuth and 30° Elevation 45° Azimuth and 30° Elevation

With additional sensors, the accuracy of the estimation of the signal arrival angle from
steering individual sensors would improve — assuming the steering errors at each sensor were
uncorrelated. Hence, one could consider steering a horizontal line array in elevation by averaging
over each single-element beam response. The averaging process would provide little resolution
improvement, so the directivity in elevation would be limited, as indicated in figure 15. The
elements in the horizontal direction can, of course, be phase delayed, weighted, and summed,
which would provide azimuthal resolution. Thus, one possible array beamforming procedure is
to steer each vector-sensor element in the direction of the estimated arrival angle and beamform
the resulting responses conventionally.
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Figure 15. Beam Pattern in Elevation of a Single Triaxial Vector Sensor
Steered to Elevation Angles of 0°, 45°, and 90°

BEAMFORMING AN ARRAY OF VECTOR SENSORS

The line array depicted in figure 1 consists of ten elements, with interelement spacing dy.
This array configuration allows for element-to-element phase variations along the x-axis only.
That is, for a fixed incident planewave, the phase at each element is constant with respect to the
y- and z-axis and varies only with respect to the x-axis. Therefore, phase can be delayed (or the
array can be steered) only by delaying phase components along the x-axis, such as is the case
with scalar pressure sensors. This is fundamental; with conventional array beamforming,
regardless of the type of array (line, planar, or volumetric), the phase delays are no different for a
scalar or vector-sensing array.

A possible approach to beamforming an array of vector sensors would be to delay,

weight, and sum the velocity components from each triaxial vector sensor separately. Thus, for
the ideal baffle configuration

N N
75 (8,4) = 2sin(@) cos(9) Y we 7, +2c0s(8)cos(9) Y wHe'FE I,

n=1 n=1

N
+ 2sin(¢)z ORI (22)

n=1
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where the amplitude shading coefficients, w(®), wf,y ), w{?) are arbitrary. The wavevector k ,
defined by equations (11), (12), and (13), corresponds to the arriving acoustic planewave, and l_c;
is the wavevector to which the array is steered. It is also noted that the exponential functions in
equation (22) may be written more explicitly as

oik=ks )Ty _ explii% {xna(e, )+ y,B(6,0)+z,7(6, d))}J, 23)
where

a(6,¢) = cos(¢)sin(0) — cos(d)sin(6;), (24)

B(6, 9) = cos($) cos(8) — cos(d, ) cos(8;), (25)
and

7(6,¢) = sin(¢) — sin(¢,). (26)

One may then be temPted to simply take the norm (or length of the weighted sum of all
the vector components) of ¥ ]\? ) in equation (22) as a means to process the vector components.
That is, the norm may be written as

N 2 N 2 N 2
BO@®,¢) = (Zw&")vm] +(Zw$,y’vynJ +[Zw$f)vzn] :
n=1 n=1 n=1

where v, =V, exp{i(k —k)-7,}, etc. Clearly, this approach results in taking the square-root of
the sum of the squared vector velocity components; this is a nonlinear ad hoc processing
technique that should be avoided.

Another approach to array beamforming, as previously described, would be to steer each
vector sensor in equation (22) towards the source, and then obtain the squared magnitude of the
resulting expression. That is, form the inner product of the summed velocities, \7](\?) , with a
steered vector of unit amplitude and take the magnitude-squared of the product. If it is assumed
that the weighting of each component of every vector sensor is identical, i.e.,

W£2X) = szy) = wff) =w,,

and, for the line array in figure 1, 7, = [x,,0.,0.], then this approach yields
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B9(8,0) =[v(6,9)-79(8,,0,)

—4g9(6,,0,,0.07 (D w, exp(i2x,a(8,)) @)
Similarly,
N 2
BA(0,0) = 4{2P(8,,0)cos(§)}2| D w,, exp(i2 x,010,))) - 28)
n=1

There is no equivalent expression for a uniaxis vector-sensing array since such elements
cannot be steered in azimuth or elevation. Therefore, the uniaxial beam response (for measuring
the vector component v)) would be written simply as

2
N
B, $) = “v(l)(e,q))uz = 4c0s2(8) cos2(9)| Y w, exp(i-c-oc—xna(e,(b))( . @9
n=1

As an aside, it is noted that the summations given above can be written in a more
compact form for certain array configurations. For example, with uniform-shading weights, and
equal element array spacing, Lagrange's trigonometric identity gives

N
w,, expliex,,0(0,¢)| = sin(N4) / sin(4) if x; = Xy, (30)

where

d
A= n-kion(e,(b).

This second approach to beamforming, however, may be limited in its capability. The
restriction of weighting values to be essentially the direction cosines and constant from element
to element disallows emphasis of some element outputs over others and it imposes the same
relative weighting to the three velocity components.

A more general linear processing technique would form the inner product of the velocity
at each element location with an arbitrary element weighting vector, Vvﬁ? )", which now may vary
at each element array location. The resulting scalar field may then be delayed and summed in a
conventional manner. Thus, in general,

N I
ZW?)'VS) i (R=K5) 7,

n=1

B)(0,0) = (31)
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N e

BO®.4)= 1A 7 I €
n=]

and for the line array,
N 2
3 (x) (») (z) ;O

By’(8,¢)= Z(Wn Vi +wi'Vy +wy, Vz)eXp(z?xn a(6,4))) - (32)

n=1

Hence, the result here is a linearly-weighted combination of all three measured velocity
components. That is, this approach yields the square of the sum of the weighted velocity
components. A special case of the general weighting vector, f‘vf;” ), would be constant direction
cosine weights.

The most general linear processing, likely only realizable in a free-field environment,
would be to augment equation (31) with a measurement of acoustic pressure. Processing all 4N
measured quantities, i.e., pressure and three velocity components at each element location, yields

2
N T T\
BP)(0,0)=| > (#) -5 + w,P,) F )| (33)

n=l1

There are now 4N degrees of freedom to manipulate, in order to maximize some measure
of performance, such as the array output signal-to-noise ratio. These 4N degrees of freedom are
the N pressure weights {w,} and the N velocity weights for each orthogonal direction, namely,
(WS, (WP}, {w?} for 1 <n<N. This increased number of degrees of freedom should
allow for considerably improved performance relative to pressure-alone processing.

For reference, the power response for a line array of baffled scalar pressure sensors is

2
B(P(6,¢) =4

y [0}
Z_:lwn exp(i — Xp(8, o)) - (34)

Hence, from equation (27), it is seen that the acoustic power from a uniformly-weighted
line array of pressure sensors is equivalent to that from an array of triaxial vector sensors at the
afray's maximum response axis. At elevation angles, ¢ = +n/2, the uniaxial (equation (29)) and
biaxial (equation (28)) line arrays considered here receive no power, and the uniaxial vector-
sensing array also has a null response at azimuthal endfire. Such is not the case for the half-
omnidirectional pressure-sensing array.

15




NUMERICAL RESULTS
COMPARISON OF BEAM PATTERNS

The beam pattern of an ideally-baffled 10-element triaxial vector-sensing line array, with
half-wavelength element separations and steered to broadside, is shown in figure 16, which
employs a gray scale from -30 dB to 0 dB. For comparison, figure 17 illustrates the beam pattern
from a pressure-sensing array steered to broadside. For broadside steering, the beam patterns from
both array types are alike. The triaxial vector sensors provide greater vertical directivity, due to
the cosine dependence, than the half-omnidirectional pressure sensors. Figure 18 compares the
primary sidelobe structure, in azimuth, of both arrays. Again, the cosine angular dependence of
the vector sensor lowers the sidelobe levels, the reduction increasing as the azithumal arrival
angle increases. This overall sidelobe reduction produces an insignificant broadening of the
azimuthal mainbeam width.
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Figuré 16. Beam Pattern at Broadside of a Linear Figure 17. Beam Pattern at Broadside of a Linear
10-Element Triaxial Vector-Sensing Array - 10-Element Pressure-Sensing Array
Having Uniform Shading Weights Having Uniform Shading Weights

The differences in vector- and scalar-array patterns become more apparent when the array
is steered to oblique angles of incidence. For example, figure 19 illustrates the beam pattern
produced from a triaxial vector-sensing array steered to 45° azimuth and 30° elevation.
Referring back to figure 14, it is clear that the array’s beam pattern is the product of the steered
element response and the array's response. The beam pattern from a pressure-sensing array is
presented in figure 20. In both figures, the null structure of the array's response is identical, as
indicated by equations (27) and (34). The differences seen are due to the inherent vector-sensor
directionality and single-element steering of each vector sensor. Therefore, at oblique angles of
incidence, a vector sensor may provide an increase in array directivity over that of a pressure-
sensing array. This increase is quantified in the next section.
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10-Element Triaxial Vector-Sensing Array
Having Uniform Shading Weights Steered to
45° Azimuth and 30° Elevation
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FREE-FIELD DIRECTIVITY CALCULATIONS

A comparison of free-field array directivity of a line array of scalar sensors detecting
acoustic pressure and an array of vector sensors detecting acoustic particle motion in up to three
orthogonal directions is presented here. Appendix A includes an analytical derivation for the
directivity of some vector-sensing line arrays. The calculations presented here, though, were
based on the derivative given in Appendix B. This derivation maximizes directivity by choosing
array shading weights constrained to be real-valued, which maximize the array signal-to-noise
ratio assuming a surrounding spherically isotropic noise field.

Figure 21 compares the maximum directivity index of an N-element pressure sensing line
array to an uniaxial vector-sensing array which measures only the y-component of acoustic
particle velocity. The elements of the arrays are equispaced at half-wavelength spacing and are
aligned along the x-axis in the free field. The arrays have been steered to broadside (0, = ¢, = 0°)
in figure 21 and endfire (6, = 90°, ¢, = 0°) in figure 22. Also shown in the figures is the
directivity index for an array which measures both acoustic particle velocity and pressure.

For a planewave signal arriving at broadside, that is, along the y-axis, there would be no
particle velocity in the x- or z-directions. Hence, for this array steering, there would be no
additional directivity gains from measuring the velocities vy or v;. Similarly, for planewaves
arriving at endfire, only the x-component of acoustic particle velocity is non-zero.

Since the directivity calculations are based on a half-wavelength equispaced line, a 10-
element pressure-sensing array has a length of 5A, for a directivity of 10 dB. Notice, in figure 21,
that the uniaxial vector sensing array achieves 10 dB of directivity with half that number of
elements and has a length of 2.5A. The array that measures both pressure and velocity provides
10 dB of directivity at a length of only 1.5, and the total number of channels (i.e., 6) is still less
than the number of elements on the pressure-sensing array.

The differences between the directivity gains shown in these figures is due to the orienta-
tion of the vector sensors with respect to the incident planewave. In figure 21, the difference in
directivity between pressure sensing and vector sensing (v,~component only) remains essentially
constant with increasing array aperture. This is because the azimuthal beamwidth narrows, with
increasing aperture, identically for the pressure and vector sensors. Hence, the gain shown is due
to a constant difference between elevation beamwidths. The uniaxial vector sensor has a cosine
element response, whereas the pressure sensor is assumed omnidirectional. In elevation, the
directivity of the vector sensor is twice that of the pressure sensor. Hence, there is a constant
difference of 3 dB.

In figure 22, the difference between the directivity index of the vector-sensing array and a
pressure-sensing array diminishes with increasing array aperture. Again, the endfire beamwidth
narrows identically for both the pressure- and vector-sensing arrays with increasing aperture.
However, since the arrays are steered to endfire, the effect of the broad angular difference
between the cosine and omnidirectional element response becomes negligible in comparison to
the endfire beamwidth. That is, with increasing aperture, the directivity is determined entirely by
the array beamwidth and is minimally influenced by the individual element response. Thisisa
feature unique to endfire steerings.
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Also shown is the directivity of an array that measures both acoustic pressure and particle
velocity. Including the pressure increases the directivity for both array steerings and the
increased gain appears to be directly proportional to the number of array elements, N. That is, the
directivity factor can be expressed as DF, = DF, + N, for optimal weightings at these steerings.
This simple relationship does not appear to hold for general array steerings, as will be
demonstrated in figures 23 through 25. Notice that, for a single element (N = 1) and for either
array steerings, the uniaxis vector sensor provides a 4.8 dB gain over the omnidirectional
pressure-sensing element. Measurement of both pressure and velocity yields a 6 dB gain.
Appendix A provides a description of the source for these gains.

In figure 23, a comparison is made between the variation of directivity with azimuth for a
pressure-sensing and vector-sensing line array. A 10-element line array, again aligned along the
x-axis and in the free field, is assumed and the elevation angle is fixed at broadside. In figure 24,
the elevation angle is fixed at 15°, whereas in figure 25, the elevation angle is 30°. In the free
field, the optimal directivity of an array of omnidirectional pressure sensors is proportional to the
number of array elements, N, for all array steerings. Hence, the constant directivity index of 10
dB for the pressure-sensing array is observed. Notice in figure 23 that the array of uniaxial vector
sensors, denoted vy, provides 3 dB gain over pressure sensors for most azimuthal steering angles.
This gain is due to the differences in the cosine and omnidirectional element response patterns.
However, at oblique elevation angles, this gain appears to diminish in proportion to the cosine of
the elevation angle.

Biaxial and triaxial sensors further improve directivity, particularly for incident angles far
from broadside where the gains can be very large. For example, in figure 24 the directivity index
of the uniaxial array is 5 dB at 77° azimuth. On the other hand, the triaxial array directivity is
14 dB, providing a directivity gain of 9 dB against isotropic noise. Notice that the maximum
gain is achieved when the pressure and all three components of particle velocity are measured
and that this optimal gain is constant for all array steerings.
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Figure 23. Directivity Versus Azimuthal Angle (6y) for a 10-Element
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THE EFFECT OF ARRAY CURVATURE

Figure 26 depicts a section of a vertical line array, curved about the x-axis, with elements
lying in the yz-plane. For this configuration, the component normals 7, and 7,. vary with
element position and may be written as

7, = cos(B,)A, +sin(B, )7, (35)
and

R, = —Sin(B,, ), + cos(B, )7, (36)
where B, is the angle formed between the n-th element normal and the y-axis.

Now, the cosine projection angles for the y- and z-velocity components (as in equation
(14), taking the dot product of the signal-arrival vector, & , with the component normals) become

cos(® ) = cos(¢) cos(B)cos(B,,) + sin(¢) sin(B,,), (€Y))
and

cos(®,) = sin(¢) cos(B,,) — cos(¢d) cos(8)sin(B,,). (38)

Figure 26. Section of a Curved Vertical Line Array
Comprised of Biaxial Vector Sensors (vy, vy) and
Component Normals (Hy:, ;")

Using the above result, the signal gain of a curved line array of uniaxial vector sensors,
which measures the vector component, v),, to an array of biaxial sensors, measuring both the v)-
and v;-components, may be compared. These gains, which are independent of frequency, reveal
how curvature and vector element responses combine and affect array performance. The uniaxial
and biaxial baffled array sensitivities can be defined, for all steerings, respectively, as
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N
My (0,05 = 4D cos(©,(8,.0,))n(0,) | (39)
n=1
N 2
M08 =4 {0520, 0,0, ) +0057@, @b (o) . 4O
n=1

where it is recognized that the n-th element shading weight, w,(¢s), may be a function of position
and elevation steering angle. The biaxial array sensitivity, M,,, is arbitrarily assumed to have
equivalent shading of the vy, and v; velocity components.

For a given signal power level, the signal gain realized from a curved array of biaxial
vector sensors, over that of uniaxial sensors, is defined as

M, (;,0,)
SG(6,,0,) =10Logyps 1. (41)
( N ¢s) glO{ My(es,(l)s)
For broadside azimuth steering, the expression for signal gain simplifies to
'd N 2
2. Wnds)
SG(0,6) =10Log;g] ——1 >t (42)
N
2. c05(d5 ~Br)Wa(ds)
Ln=1 J

The signal gain of a fully-populated cylindrically-curved line array, steered to broadside,
is given in figure 27. The biaxial sensors improve the conformal array's signal gain at all
elevation steerings, providing a minimum gain of approximately 3 dB at +45° and a maximum
gain of nearly 4 dB at both broadside and endfire elevation angles.
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Figure 27. Signal Gain of a Fully-Populated Cylindrically Curved Vertical Line Array
of Biaxial Vector Sensors with Uniform Shading Weights

CONCLUSIONS

Presented in this report are formulations for the beam response and directivity of arrays of
uniaxial, biaxial, and triaxial vector sensors. To simplify the development, each orthogonal
component of a multiaxis vector sensor was assumed to be collocated and the orientation of the
components was unvarying from sensor to sensor. However, the amplitude shading coefficients
for each vector component of particle velocity was allowed to be arbitrary. The report has
investigated the response of the sensors in both the free field and on an ideal baffle.

Of the results presented in this report, the most significant are the increased gains in
directivity an array of vector sensors provides, shown in figures 21 through 25, over that of a
pressure-sensing array in the free field. Directivity calculations for an ideally-baffled line array
is an on-going effort and have not been presented here. Figure 23 indicates that a 10-element
line array of triaxial vector sensors, with elements separated by one-half an acoustic wavelength,
has a directivity index 5 dB greater than that of an identical line array of pressure sensors for ail
azimuthal array steerings between 12° to 67°. Hence, to achieve equivalent array gain, the
acoustic aperture of the pressure-sensing line array must be almost four times greater than that of
a vector-sensing array. This implies that vector-sensing arrays, albeit with a larger number of
output channels, may be physically smaller than pressure-sensing arrays, without a loss in
directivity. With pressure sensors, the only way to increase directivity is to increase array
aperture. Therefore, for pressure-sensors, gains in directivity are fundamentally limited by the
size of the array. However, for a fixed array aperture and a three-fold increase in channel count,
significant directivity gains may be realized with an array of triaxial vector sensors. Increasing
the number of processing channels does add complexity and expense to an array design but such
design challenges are modest compared to trying to increase array aperture.
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Another interesting result described here is the ability to form a broad acoustic beam,
steered in the direction of an incident signal, using a single multiaxis vector sensor. Hence, a
vector-sensing line array, oriented say, along the x-axis as shown in figure 1, will provide
resolution of both the azimuth and elevation arrival angles. It was noted, however, that the
resolution of the elevation angle would be limited to a beamwidth proportional to the cosine of
the elevation angle. That is, the beamwidth is £60° at the point at which the power relative to the
maximum response axis is down by one-half.

Figures 4 and 5 illustrated the angular sensitivity of, respectively, an individual pressure
sensor and the y-component of a uniaxial vector sensor. By definition, the uniaxial vector sensor
element response is more directional, and it is this directionality which provides the constant 3
dB increase in the array directivity index shown in figure 21. Specifically, the cosine element
response has an element directivity that is twice that of an omnidirectional pressure sensor. This
gain then, for broadside array steering only, is due simply to the assumed differences in the
pressure and uniaxial element responses.

It must be noted that baffled pressure sensors often have an element response pattern
approximated well by a cosine raised to a fractional power approaching unity. For these
configurations, the directivity index for a linear pressure-sensing array and any type of linear
vector-sensing array sfeered to broadside, would be approximately equivalent. A vector-sensing
array will provide a constant directivity gain of 3 dB over a pressure-sensing array when it is
assumed the pressure sensors are half or omnidirectional. However, additional gains are seen, as
shown in figures 23, 24, and 25, for other array steerings. Here, the pressure-sensing directivity
remains constant, whereas the multiaxis vector sensor gains vary with array steering and these
gains are due to measuring the additional vector components.

A brief investigation of curvature issues indicates that multiaxis vector sensors reduce
signal losses due to highly-curved array apertures. An example is given of a fully-populated
curved vertical line array comprised of either biaxial vector sensors or uniaxial vector sensors.
The biaxial vector sensors improved the signal gain, independent of frequency, over a uniaxial
vector sensing array by as much as 4 dB. Similar gains would be seen in a comparison to a
pressure-sensing array and, in general, multiaxis vector sensors will improve a conformal array's
signal gain for all array steerings.

Finally, it has been shown, particularly in figures 24 and 25, that it is desirable to have an
array which measures pressure in addition to the three components of acoustic particle velocity.
Optimal processing of arrays which measure all four quantities, pressure and the three
components of velocity, is the subject of future research.
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APPENDIX A

ANALYTICAL EVALUATION OF DIRECTIVITY
FOR HALF-WAVELENGTH ARRAY SPACING

Array directivity is defined as the ratio of the output signal-to-noise ratio (SNR) of an
array to the input SNR at an omnidirectional element in a spherically isotropic noise field.
Directivity is a fundamental measure of array performance; the directivity factor, DF, of an array
in the free field can be expressed as®

47 B0 0,) (A1)
2nm ’
[ [ Be®,0)sin(o)dpdo
00
where B(0,0) is the array’s beam pattern. The directivity index is 10 log(DF). Note that to
simplify the following derivations, the elevation angle ¢ will now be measured from the vertical
z-axis and the azimuthal angle 6 will be measured from the x-axis in the direction of the y-axis.
Also, the line array elements are now equispaced along the z-axis at spacing d = 1/2.

DF =

Calculation of the DF typically requires the numerical evaluation of the above double
integral. However, for certain array geometries and frequencies (e.g., a frequency at which an
acoustic wavelength equals twice the interelement line array spacing, d, = A/2), the integrals may
be evaluated exactly. These frequencies correspond to the array's upper aliasing frequency limit
and maximum array directivity.

The maximum array response at steering angles (85,0s) can be obtained from equation
(33). In the free field and with elements placed along the z-axis at one-half an acoustic
wavelength, the maximum array responses may be written as

N-1 2
BP(es:¢s)= ngp) > (A—2)
n=0
1 2 2 NSl :
B (05, 05) = cos?(8)sin?(45)| > wi)| | (A3)
n=0
1 2 2 &l ’
B{P(0,,65) =sin®(8,)sin?(9,)] 2. wP| , (A4)
n=0
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Z w(z)

B(l)(es’ bg)=cos (¢s

foar? ’ (A-5)
and, for triaxial vector Sensors,
3 N-1 ) 2
BO(0,,45) = nZOa(es,qas)w(" +5(05, 0w + (0w, (A-6)

where a(Bs,¢s) = cos(0s) sin(¢s), b(0s,0s) = sin(6s) sin(¢s), and c(9s) = cos(ds).

The effort in obtaining expressions for directivity factors then is in analytically evaluating
the double integral given in equation (A-1).

DIRECTIVITY FACTORS FOR A SINGLE ELEMENT, N =1.

It is straightforward to derive the directivity factor of a single omnidirectional pressure
sensor. Namely,

2
2T TN -
= | IZ (p) exp{inn(cos(d))——cos(cbs)} sin(¢) d0dp = 4n(w§™ ). (A-7)
0 0jn=0

Hence, upon substituting equation (A-7) and (A-2) into equation (A-1),
DFpy=——35=1L (A-8)
Therefore, the directivity index is zero and the single pressure sensor has no directivity.

A similar calculation for an uniaxial vector sensor that measures the v, component of
particle velocity, as in equation (A-3), gives

2T T
=[] (wo cos(e)sm(¢)) sin() dodo = 4?"(ng>)2. (A-9)
00
Upon substitution,
DFyy = 3cos?(8)sin(¢). (A-10)
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Likewise, for the velocity components vy, and v,

DF,y =3sin®(8,)sin®(9,), (A-11)
and
DF¢;y = 3cos* (). (A-12)

Equations (A-10), (A-11), and (A-12) indicate that a single velocity sensor may have a maximum
directivity factor three times greater than an omnidirectional pressure sensor, or a gain in
directivity index of 4.8 dB. (Figures 21 and 22 illustrate this gain.) These results also indicate
that directivity factors of vector sensors are also highly dependent on azimuth and elevation

angles (Os,9s).

The most general type of single array element would be a triaxial vector sensor
augmented with a measurement of pressure, as in equation (33). The maximum response of such
an element is given as

2
By (05.89) = (W7 + (00,1967 + 5B 0,987 + el ) (A-13)

and the two-fold integral becomes
2n w

4 X z
1= [Bpy(@.0)sin8) dodd = 2 (300572 + (7 4 (u) + (w12 (A1)
00

Hence, the directivity factor of a single element that measures all 3 components of particle
velocity and acoustic pressure is

B,,(85,05)
DF,, = s . (A-15)
pv (x)2 ()52 ;. (2)\2
(wg )" (wg ") (wy )
(w(()p))z + o3 + 03 o3

The goal now becomes determining the weights that maximize the above ratio. Without
loss in generality, one may let w(()p )~1 and solve the following equations simultaneously:

0DF,, ODF,, 8DF
B = - o = (A-16)
owg’  owy’  owg

This leads to two sets of optimal weights, one corresponding to a minimum DFpy and the
other, given below, for maximum directivity, i.e.,

w§® =3a(0,,;), (A-17)




wg?) =305, 6,), (A-18)

w§? =3e(d,). (A-19)

Substituting the optimal real weights in equations (A-17), (A-18), and (A-19) into
equation (A-15) yields

DEp, =1+3(a(0,,0,)% + BO,,0,)% + c(6,)° ) =4, (A-20)

since a(8,05)° + b(85,95)” + c(d5)* =1 always.

Therefore, the maximum directivity for a single sensor that measures all velocities as well
as acoustic pressure is DI = 10 log(4) = 6 dB, and this holds for any steering.

DIRECTIVITY FACTORS FOR AN N-ELEMENT LINE ARRAY

The integral given by equation (A-7) for pressure sensors may be integrated directly over
azimuth angle 6, and assuming real-valued weights

N-1 N-1 T .
=21y, > wiP wip jexp[i(n — m)(cos(d) - cos(d)s))n] sin(4) do. (A-21)
n=0 m=0 0

Letting u = cos(¢) and integrating over u, results in an exact expression for the DF of a
line array of pressure sensors, i.e.,

N-1 2
S
n=0

N-1 :
> (wiP)?

n=0

DF,

P (A-22)

This ratio is a maximum for uniform weights and results in an optimal directivity of DI = 10

log(N).

Similar analytical expressions for the DF of vector-sensing arrays are difficult to obtain
and require one to approximate the DF by assuming a large number of array elements N. For
example, consider an array of uniaxial vector sensors that measure the v, component of particle
velocity. Then
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2

2T . N-1
I= | [sin*@)sin®(9)| X, wi? explinm(cos(9)-cos(d;))] sin(d)dopde.  (A-23)
00 n=0

Letting u = cos(¢) and integrating over 0 yields

N-1 ) 2
3 wDgim(u=us)
n=0

1
I=n[a-4?)
-1

du. (A-24)

Although this integral can be evaluated exactly, it is rather tedious and difficult to interpret and
approximate. However, for large N and for ug = cos(¢;) not close to =1, one may argue that the
exponential term in equation (A-24) essentially samples (as in a delta function) the integrand at
u = ug. Therefore,

I N-1 N-1 .
I= n(l—ug) J‘ Z Z w;}’)wsny) o H(n=mym(u-us)
~1 n=0 m=0

(A-25)

N-1
=2msin’(¢,) 2, (W),
n=0

The DF then becomes, substituting (A-4) and (A-25) into (A-1),

2
2sin?(¢ )[]Vilw(y)J
n=0

DF, =—5— : (A-26)
> (W '

n=0

This agrees with the numerical calculations presented in figure 21. This shows that, as the
number of array elements increase and for ¢¢ = 90°, the directivity of a uniaxial vector-sensing
array approaches a gain that is 3 dB greater than that of a pressure-sensing array. Approximations
for DFy, DF7, and even DFp,y, can be obtained in a similar manner and will be reported in a
subsequent report.
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APPENDIX B
DERIVATION OF MAXIMUM ARRAY GAIN

Consider an N-element array with pressure sensors and triaxial velocity sensors at each
element location xy, yy, zy. It is presumed that each velocity sensor is oriented directly along its
corresponding axis. If this array is steered in direction 0g,0¢ by phase shifting the individual
element outputs py (%), vxn(t); vyn(?), and vzp(1), the most general linearly-processed array output
waveform is

N
V(1) = 3 €55 05) Wpm V(D) Wan Vin (D + Wy V(D Wi vin @], (B-D)
n=1

where
Von(1) = pp(D)l(pc), k= wlc,

e,(6,0)= exp[z‘k(x,z sin¢ cos0 + y,, sin ¢sinb + z,, cos ¢)], (B-2)

and the 4N weights {wpp}, {Wxn}, {Wyn}, {wzn} are real, but otherwise arbitrary.

A plane-wave signal arrival from direction 0,4, 4 results in the array output signal
waveform

N
Y(£) = Vy exp(iot) D, ey (05, 05) € (04, 00) [Wpn +
n=1

(B-3)
+ Wy, sing, cosO, + wy, sing, sinb, + wyy, cosd,

where Vexp(io?) is the pressure waveform observed at the origin of coordinates. For notational
convenience, define the direction cosines

D, =sin¢cos6, D, =sin¢sin®, D, =cosd, (B-4)
and the two 4Nx1 real column matrices

W= [Wpi... WpN Wyl... WxN Wyl... WyN Wzl... WNIT,
(B-5)
DO¢)= [1.. 1 Dy.. Di Dy.. Dy D.. DT.




Then, when the plane-wave signal arrival angle coincides with the steering angle, namely,
04 =65, g = g, the array signal output waveform is expressible as

Yi(t) = V; exp(io) W7 DO, ¢;). (B-6)

The array signal output power is then
2 2 2
Po =R} =l [T D®,.0,)] B-7)
At the same time, the array output noise waveform can be expressed as
Y, =TV, (B-8)
the 4Nx1 column matrix

Vp(t)
V(0
V7
V.(6)

Vo(t)= (B-9)

and the four Nx1 column matrices

* % T
Vp(1) =[] B0 p1(0)-.. e Os05) v ()]
* * T
Vo) =[e] ©5,05)v51(0)... e @5 vy ()]
(B-10)

* * T
V(1) =[e] 05,0,)v31(0)... ey (B 0 vy ()]
* * T
Vo) =[e] (85,05)v21(0)... e (Osb5) van (1]
This leads to the array output noise power in the form

P =0 =WV W E YW =T R, (B-11)

where R is a Hermitian 4Nx4N covariance matrix of the totality of 4N received noise waveforms.
Because all the weights in (B-1) and (B-5) are real, (B-11) can be written as



P, =WIRW, (B-12)
that is, the imaginary part of R is not active in Hermitian form (B-11).

We define the array gain as the quotient of the output signal-to-noise ratio to the input
signal-to-noise ratio. There follows

W7 D6, 6,1
wiR w

AG = (B-13)

where we have normalized the input noise pressure power at unity.

The 4N optimum weights that maximize this array gain are

W, =oR ! D6, 6,), (B-14)
while the corresponding optimum array gain is

AG, =max 4G = DT (8,,0,) R, D(8;, ;). (B-15)

This relation was used in the main body of the report to obtain the numerical values in figures 21
through 25. The elements of the real 4Nx4N matrix R, are given in Appendix C.

B-3/B-4
Reverse Blank




-

APPENDIX C
SENSOR CORRELATIONS IN AN ISOTROPIC NOISE FIELD

In this appendix, ¢ is the polar angle measured down from the vertical z-axis, while 0 is
the azimuthal angle measured from the x-axis in the direction of the y-axis.

FUNDAMENTAL DOUBLE INTEGRAL
4 2n
qu) sin ¢ I d® explia sin ¢ cos0 + ib sin ¢ sin 6 + ic cos 0)
0 0
=27 I dd sin ¢ exp(ic cosd) Jo((a2 +b5%)" sin ¢)
0

=27 7] do sin ¢ cos(c cos ) J'O((a2 +b5%)" sin d))

/2

=4n _[ do sin ¢ cos(c cos ) J(,((a2 +5%)" sin ¢)

0
sin O
Q 2
where [7; 6.688 2] is used in the last line. Also used is the fact that sin(c cos¢) is odd in ¢ about

¢ = n/2, whereas all the other functions are even in ¢ about ¢ =n/2. This result applies for
complex a,b,c as well.

0=(a*+p*+c*)",

=4z

It is now possible to evaluate, in closed form, extensions of the double integral above to
include additional factors of the form

(sin ¢ cosB)” (sin ¢ sin6)” (cos¢)” ,

where m,n,k are integers, by taking partial derivatives with respect to a and/or b and/or ¢. To that
aim, let

sin Q

F=
Q

= Jo(Q)-




Then,

ﬁ@_{cosQ sin Q
y = —=

o o }a——ah(Q)/Q

here the term 00/0a = a/Q is used. The bracketed term is -1/3 at 0 = 0. Also,

F -—-—a—p ={(3“Qz)5i1’1Q—3Q cos O

ab = ob a QS }ab:ab JZ(Q)/QZ s

where the bracketed term is 1/15 at Q = 0. Finally,

F,

aa

_a cosQ st} [(3—-—Q2)sinQ—3QcosQ:! )
aale” [Qz o ) o ‘

=—j(@)/Q+a’ (D) Q.

All other partial derivatives of first and second order, vnth respect to a and/or b and/or c, follow
from these results by use of symmetry; that is, @ = (@ + 6> +¢*)2 . The following is an
example of their immediate application:

_ﬁ Oj do sin Oj d0 (sin ¢ cos0) (sin sin®)

x exp(ia sin ¢ cosO + ibsin¢ sin® +ic cos ) = F,, .

SPHERICALLY-ISOTROPIC NOISE PRESSURE FIELD

Let the incident pressure at the origin of coordinates, due to incremental solid angle d8 d¢
about arrival angle 8,, be

dp(1,0,0,0) = exp(ict) P(6,) d® do ,

where noise source distribution P(0,¢) is zero mean and satisfies

P(®,0) P*(0',¢")=Isin¢3(0-6")3(¢ - ¢").

This corresponds to an isotropic noise field of uncorrelated arrivals where I is 2 measure of the
intensity (and could be a function of ®), while the sin¢ factor is due to the incremental surface
area in spherical coordinates.
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The incremental pressure at general point P1 = (x1,y1,z1) is then
dp(t,xy, y1,21) = dp(t — 11(6,9),0,0,0) ,

where time delay

1
11(9,¢)=—Z(x1 sing cos® + y; sing sin®+z; cos¢).

The total (noise) pressure at P is, therefore, with k= w/c,

D(t, 51, 102,) = explior) | db | dO P(9,0)

x explik(x, sin ¢ cos® + y, sin ¢ sin B + z, cos 0)].

The correlation of pressures at separated times and distances is

T 27
P4 %, ¥1,2)P* (5, %5, Y0 2,) = explio(t, —1,)] [ do [ do
0 0

n 2n

X I ao’ j do’' P(6,¢)P*(0',0") exp[ik(x1 sin¢ cosO + y,sin¢ sin6
0 0

+2,c08) — x,5in ¢’ cos®’ — y, sin¢’ sin®’ — z, cos$’)]

T 2n
= L explio(t, —1,)] [dosin¢ | 8 explik({x, — x,}sin ¢ cos®
0 0

+{y, — ¥,} sin¢ sin0 + {z, — z,} cos 9)]

sin(kd)
kd H

=4mn I explio(t, —1,)]

where

d= [(xl _x2)2 +(y1 _y2)2 +(Zl _22)2]1/2 .

This correlation has the familiar sin(kd)/(kd) spatial behavior, where d is the absolute distance
between the two points of interest; this statement is in coordinate-free form, since distance d is

independent of the particular geometry adopted.




ISOTROPIC NOISE VELOCITY FIELD
Let 7(6,(1)) be the unit vector pointing in direction 6,¢:
%(0,¢) =sin¢ cosO 7 +sin¢ sin® 7 +cosd % .

Let the incident velocity field at the origin of coordinates, due to incremental solid angle
d6 d¢ about arrival angle 6,0, be :

dv(£,0,0,0) = exp(iot) S(0,9) do db 7(6,9),

where noise source distribution S(6,0) is zero mean and satisfies

S(6,¢)S* (0',¢")=Isind 5(6—-0") 3(d—9').
This corresponds to an isotropic noise field of uncorrelated arrivals where I is a measure of the
intensity (and could be a function of ®), while the sin¢ factor is due to the incremental surface

area in spherical coordinates.

The incremental velocity at general point P; = (x1,y1,21) is then

dv(t,x, y1,21) = dv(t—1,(8,),0,0,0),

where the time delay is

1
11(0,9) = —;(xl sin¢ cosO + y; sin¢ sin6 + z; cos¢).

The total (noise) velocity at Pj is, therefore, with k£ = w/c,

k4

27
V(.. 3. 7,) =exp(ior) [ do [ d0S(6,)
0 0

x exp|ik(x, sin¢ cos® + y, sin ¢ sin® + z, cos )] %(6,¢) .

If exp[ ] denotes the spatial exponential term above, and the velocity vector is expanded
asvV=v, 1+ v, 7 +v, K » then the velocity components at Py are




K

2n
v, (2,x1, 11, 21) = exp(iot) J- dd I d0 S(6,¢) exp[ ]sin ¢ cosO,

0 0
T 2n
v, (1, %1, ¥1,21) = exp(iot) J- do J db S(6,¢) exp[]sin¢ sinB,
0 0
T 2z
V., 31,2) = explion) [ db [ d0:5(0.6) explJcos
0 0

We are interested in all six possible correlations at general separated times and distances, namely

*
vx(tbxl?ylﬁzl) vy(t2:x29y2122) s

* *
Ves VYV, V.V,

where an abbreviated notation has been employed in the latter line.

The xy-correlation is

4 2%
V, (1,30 70,2V (8, %, 9. 2,) = explio(t, - 1,)] [ do [ 8 I'sing
0

x (sin ¢ cos 0) (sin ¢ sin0) exp[ik({x, — x,} sin ¢ cosO
+{¥ —»,}sin¢sin0 +{z - 22}C05¢)] =—4n F,, I explio(t, - 1,)]

) .
= 4n I explio(f, —t,)] @ -3 stQs +3Q cosQ K (x, = x,)(0 — 37)

= —4n I explio(t, —1,)] Qg F(x, = %,) (3 = ¥,)

where

1/2
0=k = k[(x1 ~1)? + (- 3) +(z —zﬂ :

Here, the delta function properties of the correlation function of random field $(6,0) and the
double integral results derived above are used. The ratio J(Q)/0%is 1/15at 0 =0.




It should be observed that the xy correlation involves the factor (x; - x2) (¥1 - y2), in
addition to the symmetric function Q of all the spatial differences. Therefore, by symmetry, the
xz correlation is identical to that above, except that factor (x] - x2) (1 - 32) is replaced by
(x1 - x2) (z1 - z2). A similar replacement of this factor holds for the yz correlation.

The other type of (auto) correlation of interest can be represented by the quantity

T 2%
V, (b Xy, Y 2)Va (1, %, 5. 2,) = explio(t, —1,)] | d | d8 Ising
. 0 0

x (sin ¢ cos8)* exp|ik({x, — x,} sin¢ cos® + {y, - y,} sin¢ sin @ +{z, — z,} cos )]

=-4n F,, I explio(t, —t,)]

_ _(sinQ cosQ (Q-3)sinQ+30cosQ ,

- E( o’ - 0> + o k*(x, "xz)z)
O ACY. 2

=E( 0 - ZQz k2(x1—x2)),

where

E=4n1] exp{ico(tl —tz)]

Again, by use of the symmetric behavior of 0, the yy correlation follows immediately upon
replacement of the (xl-x2)2 factor by (yl-yz)z. A similar procedure holds for zz correlation.

When points P; and P> coincide, O = 0 and all three (auto) correlations reduce to E/3;
here, j; (0)/Q = 1/3 isused at O = 0. This observation is consistent with the fact that the field is
isotropic and no coordinate direction is preferred, in so far as one point in space is concerned.

ONE POINT IN SPACE

Now, some of the general results above will be specialized. For one point in space, set x;
=X1,¥2 =Y1,22 =21, getting 0 =0 and
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vx(t17x1,y1az1)v; (tpxpypzl) =0

V. (4%, Y1, 2)Va (8%, 1,1,2,) =0 ( SJorallt,t,,x,,y,,2,.

vy(tlaxpyl:Zl)v:(tzaxlsylazl) = 0,

Also, there follows

E_4n

vw(tbxl’yl’zl)v:v(tbxl’ylszl)=?_ 3 Lexplio(n -5)],

where subscript w=x or y or z.

Since the coordinate axes are arbitrary, these properties can be summarized in a
coordinate-free form: for any orthogonal cartesian coordinate system, the three velocity
components at one spatial point are uncorrelated with each other for all time delays. Also, each
velocity component has identical time (auto) correlations.

TWO DIFFERENT POINTS IN SPACE

Consider two points P and P in space. If an arbitrary cartesian coordinate system is
erected, the two locations Py = (x1,y1,21) and P2 = (x2,y2,22) will not have any special properties;
that is, x3 # x1, 2 # y1, 22 # z1. Then, none of the correlations above (auto or cross) will be
zero. Physically, this says that, generally, all of the three orthogonal velocity components at Py
are correlated with all of the three orthogonal velocity components at Ps.

However, there is one special coordinate choice which does have uncorrelated velocity
components. Since the noise field is isotropic, there is no loss of generality in taking the z-axis to
be parallel to the line joining points Py and P»; this still leaves rotational freedom for the
locations of the perpendicular x- and y-axes. Thus, v,(t1,x1,1,21) is called the in-line velocity
component at point Py at time #1, i.e., the velocity at P; along the line joining points P; and P,.
Then, vx(#1,x1,¥1,21) and vy(t1,x1,y1,21) are called the two in-plane velocity components at P at
time 71, namely, the orthogonal velocities in the plane perpendicular to the z-axis at location
z=z1. Recall that the location of the x- and y-axes is arbitrary.

Now,
x=x, 2=y, 0=Hz ~z)|=kd,

where d is the distance between point Py and P>. There follows
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V,(fl,xl,ypzl )V; (t29xlry1222) = O

Vx(tpxpyle)V;(fz,xl,yl,Zz)= 0, for all tl,tz,x,,y],zl’zz .

Vy(tlaxlaypZ])V:(tz:xpypzz)= 0’

Stated in a coordinate-free form, the in-line velocity component at P; is uncorrelated with &l in-
plane velocity components at P; for all time delays and distance separations d. Also, any in-
plane velocity component at P is uncorrelated with its orthogonal in-plane velocity component
at Py for all time delays and distance separations d.

In addition, for all tolgs X3 V15252, the correlations are

vx(tl,xl,yl,zl)v;(tz,xl,yl,zz)=E(st °°SQ) J—I(Q—Ql

vy(tl,xl,yl,zl)v;(tz,xl,yl,zz)=E(st C°SQ) EJIEQQ)

vz(tl,xl,yl,zl)v;(tz,xl,yl,zz)=E( _2)S‘HQ+ZQ°°SQ)
-5[22_;0)=5(0-222),

where O = kd and E = 4n I exp[iw(t1-2)]. That is, the orthogonal in-plane velocity components
have identical spatial correlations, whereas that for the in-line velocity component is different.

All three (auto) correlations reduce to E/3 = 4n/3 I exp[iw(t1-)] at zp = z;, making
P> =P;, a common point. On the other hand, for large physical separations d, the in-plane
correlations behave as -E cosQ/Q2, whereas the in-line correlation decays slower, namely, as
E sinQ/Q. This latter form is identical to the pressure correlation in an isotropic field.
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